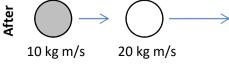

Newton's First, Second and Third Laws

Momentum

All moving objects have momentum.

It is a vector quantity (has size and direction).


 $\begin{array}{c} \longrightarrow p = mv \longleftarrow & \text{Velocity} \\ \text{Momentum} & (m/s) \\ (\text{kg m/s}) & \text{Mass (kg)} \end{array}$

The greater the mass, the greater an objects its momentum. The greater the velocity, the greater an objects momentum.

All of the AQA science revision sheets at www.tes.com/teaching-resources/shop/teachsci1

A moving object crashes into a stationary object causing both objects to move.

The total **momentum before** the collision is **equal** to the **momentum after** the collision (30 kg m/s in this example).

 If the two objects lock together and continue to move after a collision then the mass of the moving object will increase, therefore the velocity will decrease to maintain momentum.

Changes In Momentum

Car Safety Zones

- **Crumple zones:** these crumple on impact, increasing the time taken for the car to stop. This decreases the force of the impact.

- **Seat belts stretch:** this increases the time for the person to stop, decreasing the force on them.

- **Air bags:** these inflate before the person hits the dashboard. The air inside compresses as the person hits it, slowing them down more gradually, reducing the force of impact.

Bike Helmets

They have a layer of foam that is crushable. This increases the time taken to stop, therefore reducing the force of the impact on the riders head.

Crash mats/cushioned flooring

If a person falls onto them they compress. This increases the time taken to come to a stop, therefore reducing the force of impact.